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The genetic and cellular alterations that define cancer provide the immune systemwith themeans to generate
T cell responses that recognize and eradicate cancer cells. However, elimination of cancer by T cells is only
one step in the Cancer-Immunity Cycle, which manages the delicate balance between the recognition of
nonself and the prevention of autoimmunity. Identification of cancer cell T cell inhibitory signals, including
PD-L1, has prompted the development of a new class of cancer immunotherapy that specifically hinders
immune effector inhibition, reinvigorating and potentially expanding preexisting anticancer immune re-
sponses. The presence of suppressive factors in the tumormicroenvironment may explain the limited activity
observed with previous immune-based therapies and why these therapies may be more effective in combi-
nation with agents that target other steps of the cycle. Emerging clinical data suggest that cancer immuno-
therapy is likely to become a key part of the clinical management of cancer.
Introduction
The development of cancer immunotherapy has reached an

important inflection point in the history of cancer therapy

(reviewed in Mellman et al., 2011). Durable monotherapy re-

sponses are consistently being reported for a broad range of

human cancers with several different agents (Hamid et al.,

2013a; Herbst et al., 2013; Hodi et al., 2010; Topalian et al.,

2012b), providing a compelling argument that cancer immuno-

therapy is active in a range of indications beyond melanoma, a

disease often thought to be atypically immunogenic (Jacobs

et al., 2012). In addition to encouraging activity, many of the can-

cer immunotherapy approaches report safety profiles that are

milder and more manageable than traditional or targeted (i.e.,

oncogene-centric) cancer therapies.

Cancer is characterized by the accumulation of a variable

number of genetic alterations and the loss of normal cellular reg-

ulatory processes (Tian et al., 2011). These events have long

been known to result in the expression of neoantigens, differen-

tiation antigens, or cancer testis antigens, which can lead to pre-

sentation of peptides bound to major histocompatibility class I

(MHCI) molecules on the surface of cancer cells, distinguishing

them from their normal counterparts. Since the work of Boon

and colleagues, we have known that these cancer-specific pep-

tide-MHCI complexes can be recognized by CD8+ T cells pro-

duced spontaneously in cancer patients (Boon et al., 1994).

However, even when T cell responses occurred, they rarely pro-

vided protective immunity nor could they bemobilized to provide

a basis for therapy.

As demonstrated by elegant analyses of cancer in mice, the

continued deletion of cancer cells expressing T cell targets

(immune editing) may enable cancers to evolve to avoid attack

(Dunn et al., 2002). Despite these findings, recent results from

human cancer have demonstrated that overcoming negative

regulators to T cell responses in lymphoid organs (checkpoints)

and in the tumor bed (immunostat function) are likely to explain

the failure of immune protection in many patients (Mullard,
2013). Factors in the tumor microenvironment can act to modu-

late the existing activated antitumor T cell immune response,

acting as an immune rheostat or ‘‘immunostat.’’ This class of

molecules, including PD-L1:PD-1 (reviewed in Chen et al.,

2012; Topalian et al., 2012a), emphasizes that the immune

response in cancer reflects a series of carefully regulated events

that may be optimally addressed not singly but as a group. The

challenge now is to use this new understanding to develop

new drugs and implement clinical strategies.

The articles contained in this issue each address key aspects

of how the immune response can control or be manipulated to

enhance anticancer immunity (Galon et al., 2013; Kalos and

June, 2013; Motz and Coukos, 2013; Palucka and Banchereau,

2013; van den Boorn and Hartmann, 2013; Zitvogel et al.,

2013). Here, we will integrate this information and consider

how it might best be used in clinical development.

The Cancer-Immunity Cycle

For an anticancer immune response to lead to effective killing of

cancer cells, a series of stepwise events must be initiated and

allowed to proceed and expand iteratively. We refer to these

steps as the Cancer-Immunity Cycle (Figure 1). In the first step,

neoantigens created by oncogenesis are released and captured

by dendritic cells (DCs) for processing (step 1). In order for this

step to yield an anticancer T cell response, it must be accompa-

nied by signals that specify immunity lest peripheral tolerance to

the tumor antigens be induced. Such immunogenic signalsmight

include proinflammatory cytokines and factors released by dying

tumor cells or by the gutmicrobiota (Figure 2, Table 1). Next, DCs

present the captured antigens on MHCI and MHCII molecules to

T cells (step 2), resulting in the priming and activation of effector

T cell responses against the cancer-specific antigens (step 3)

that are viewed as foreign or against which central tolerance

has been incomplete. The nature of the immune response is

determined at this stage, with a critical balance representing

the ratio of T effector cells versus T regulatory cells being key

to the final outcome. Finally, the activated effector T cells traffic
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Figure 1. The Cancer-Immunity Cycle
The generation of immunity to cancer is a cyclic process that can be self propagating, leading to an accumulation of immune-stimulatory factors that in principle
should amplify and broaden T cell responses. The cycle is also characterized by inhibitory factors that lead to immune regulatory feedback mechanisms, which
can halt the development or limit the immunity. This cycle can be divided into seven major steps, starting with the release of antigens from the cancer cell and
ending with the killing of cancer cells. Each step is described above, with the primary cell types involved and the anatomic location of the activity listed. Ab-
breviations are as follows: APCs, antigen presenting cells; CTLs, cytotoxic T lymphocytes.
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to (step 4) and infiltrate the tumor bed (step 5), specifically recog-

nize and bind to cancer cells through the interaction between its

T cell receptor (TCR) and its cognate antigen bound to MHCI

(step 6), and kill their target cancer cell (step 7). Killing of the can-

cer cell releases additional tumor-associated antigens (step 1

again) to increase the breadth and depth of the response in sub-

sequent revolutions of the cycle. In cancer patients, the Cancer-

Immunity Cycle does not perform optimally. Tumor antigensmay

not be detected, DCs and T cells may treat antigens as self rather

than foreign thereby creating T regulatory cell responses rather

than effector responses, T cells may not properly home to

tumors, may be inhibited from infiltrating the tumor, or (most

importantly) factors in the tumor microenvironment might sup-

press those effector cells that are produced (reviewed by Motz

and Coukos, 2013).

The goal of cancer immunotherapy is to initiate or reinitiate a

self-sustaining cycle of cancer immunity, enabling it to amplify

and propagate, but not so much as to generate unrestrained

autoimmune inflammatory responses. Cancer immunotherapies

must therefore be carefully configured to overcome the negative

feedback mechanisms. Although checkpoints and inhibitors are

built into each step that oppose continued amplification and can
2 Immunity 39, July 25, 2013 ª2013 Elsevier Inc.
dampen or arrest the antitumor immune response, the most

effective approaches will involve selectively targeting the rate-

limiting step in any given patient. Amplifying the entire cycle

may provide anticancer activity but at the potential cost of

unwanted damage to normal cells and tissues. Many recent clin-

ical results suggest that a common rate-limiting step is the im-

munostat function, immunosuppression that occurs in the tumor

microenvironment (Predina et al., 2013; Wang et al., 2013).

Initiating Anticancer Immunity: Antigen Release,

Presentation, and T Cell Priming

Attempts to activate or introduce cancer antigen-specific T cells,

as well as stimulate the proliferation of these cells over the last 20

years, have led to mostly no, minimal or modest appreciable

anticancer immune responses. The majority of these efforts

involved the use of therapeutic vaccines because vaccines can

be easy to deploy and have historically represented an approach

that has brought enormous medical benefit (reviewed by Pal-

ucka and Banchereau, 2013). Yet, cancer vaccines were limited

on two accounts. First, until recently, there was a general lack of

understanding of how to immunize human patients to achieve

potent cytotoxic T cell responses. This limitation reflects

continued uncertainties concerning the identities of antigens to
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Figure 2. Stimulatory and Inhibitory Factors in the Cancer-Immunity Cycle
Each step of the Cancer-Immunity Cycle requires the coordination of numerous factors, both stimulatory and inhibitory in nature. Stimulatory factors shown in
green promote immunity, whereas inhibitors shown in red help keep the process in check and reduce immune activity and/or prevent autoimmunity. Immune
checkpoint proteins, such as CTLA4, can inhibit the development of an active immune response by acting primarily at the level of T cell development and
proliferation (step 3). We distinguish these from immune rheostat (‘‘immunostat’’) factors, such as PD-L1, can have an inhibitory function that primarily acts to
modulate active immune responses in the tumor bed (step 7). Examples of such factors and the primary steps at which they can act are shown. Abbreviations are
as follows: IL, interleukin; TNF, tumor necrosis factor; IFN, interferon; CDN, cyclic dinucleotide; ATP, adenosine triphosphate; HMGB1, high-mobility group
protein B1; TLR, Toll-like receptor; HVEM, herpes virus entry mediator; GITR, glucocorticoid-induced TNFR family-related gene; CTLA4, cytotoxic T-lympocyte
antigen-4; PD-L1, programmed death-ligand 1; CXCL/CCL, chemokine motif ligands; LFA1, lymphocyte function-associated antigen-1; ICAM1, intracellular
adhesionmolecule 1; VEGF, vascular endothelial growth factor; IDO, indoleamine 2,3-dioxygenase; TGF, transforming growth factor; BTLA, B- and T-lymphocyte
attenuator; VISTA, V-domain Ig suppressor of T cell activation; LAG-3, lymphocyte-activation gene 3 protein; MIC, MHC class I polypeptide-related sequence
protein; TIM-3, T cell immunoglobulin domain and mucin domain-3. Although not illustrated, it is important to note that intratumoral T regulatory cells, macro-
phages, and myeloid-derived suppressor cells are key sources of many of these inhibitory factors. See text and Table 1 for details.
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use, their mode of delivery, the types of adjuvants required, and

the proximal characteristics of the desired T cell response

(Palucka and Banchereau, 2013). Second, the presence of the

immunostat in the tumor microenvironment may dampen or

disable antitumor immune responses before clinically relevant

tumor kill can occur. Thus, as long as these negative signals

are in place, the prospects for vaccine-based approaches

used alone are likely to be limited.

Although vaccination can accelerate the anticancer immunity

in the context of treatments that suppress negative regulators

(Palucka and Banchereau, 2013), a number of significant chal-

lenges need to be overcome. First is the identification of the

appropriate tumor antigens to include in any vaccine. A large,

monovalent antigen trial (using the C-T antigen MAGE-A3) is

currently under way (Kruit et al., 2013; Vansteenkiste et al.,

2013), yet it is not clear that any one candidate will necessarily
generate sufficiently robust T cell responses in all patients. More-

over, a single antigenic target, especially one not derived from a

protein that is an inherent oncogenic driver, seems more likely to

enable resistance by antigenic drift (immune editing) than a

multivalent vaccine (Palucka and Banchereau, 2013).

Decidinghow toconfiguremultivalent vaccines is itself adaunt-

ing challenge. It may be insufficient to rely entirely on sequencing

the expressed tumor genome looking for point mutations, trans-

location fusions, or C-T antigens. Not only might this vary from

patient to patient or even from cell to cell within a single patient’s

tumor, expressionat themessengerRNAorprotein level doesnot

assure that predicted antigenic peptides will be generated and

expressed as peptide-MHCI complexes, especially in the face

of the allelic complexity in the MHC. Several groups are actively

approaching this problem by using a combination of informatics

andmass spectroscopy of peptides eluted fromMHCImolecules
Immunity 39, July 25, 2013 ª2013 Elsevier Inc. 3



Table 1. Cancer-Immunity Cycle: Examples of Positive and Negative Regulators at Each Step

Steps (+) Stimulators (�) Inhibitors Other Considerations Example References

1. Release of cancer

antigens

Immunogenic or necrotic

cell death

Tolergenic or apoptotic

cell death

Tumor-associated

neoantigens and cancer

testis antigens

Ferguson et al., 2011

2. Cancer antigen

presentation

d Proinflammatory cytokines

(e.g., TNF-a, IL1, IFN-a)

d Immune cell factors:

CD40L/CD40

d Endogenous adjuvants

released from dying tumors:

CDN (STING ligand), ATP,

HMGB1

d Gut microbiome products:

TLR ligands

IL-10, IL-4, IL-13 Dendritic cell maturity Lippitz, 2013;

Mellman et al., 2011

3. Priming and activation CD28:B7.1, CD137 (4-1BB)/

CD137L, OX40:OX40L,

CD27:CD70, HVEM, GITR,

IL-2, IL-12

CTLA4:B7.1, PD-L1:PD-1,

PD-L1:B7.1, prostaglandins

Central tolerance, T cell

repertoire, T regulatory

cells

Franciszkiewicz et al., 2012;

Lippitz, 2013;

Riella et al., 2012;

So et al., 2006

4. Trafficking of T cells

to tumors

CX3CL1, CXCL9, CXCL10,

CCL5

Franciszkiewicz et al., 2012;

Peng et al., 2012

5. Infiltration of T cells

into tumors

LFA1:ICAM1, selectins VEGF, endothelin B receptor Franciszkiewicz et al., 2013

6. Recognition of cancer

cells by T cells

T cell receptor Reduced peptide-MHC

expression on cancer cells

Mellman et al., 2011

7. Killing of cancer cells IFN-g, T cell granule

content

PD-L1:PD-1, PD-L1:B7.1,

TIM-3:phospholipids, BTLA,

VISTA, LAG-3, IDO, Arginase,

MICA:MICB, B7-H4, TGFb

T regulatory cells,

myeloid-derived

suppressor cells, M2

macrophages, hypoxia

Chen et al., 2012;

Greaves and Gribben, 2013;

Mellman et al., 2011;

Topalian et al., 2012a
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onbothcell linesandprimary tumors (Kasuga, 2013;Rammensee

et al., 2002;Segal et al., 2008). In principle, this information canbe

used to guide the formulation of multivalent vaccines, although it

does not necessarily address the problemof how to identifyMHC

class II epitopes that may be required to provide CD4 T cell help

that might be needed to produce protective CD8 responses. The

use of intact proteins as an immunogen may help mitigate this

issue. Moreover, it has thus far proved difficult to identify MHCI-

bound peptides that harbor pointmutations that could selectively

target T cell responses to cancer cells, which is unfortunate given

that targeting somatic mutations should reduce the chances of

generating autoimmunity or the need to overcome central toler-

ance (Mellman et al., 2011). Even assuming the correct antigens

are in hand, howbest to deliver them to patients remains a critical

unknown. Peptides in emulsified vehicles represent a common

and accessible approach, but in the absence of compelling pos-

itive controls for any vaccine, it is impossible to knowwhether it is

an effective approach. Other strategies include direct targeting to

DCs, adoptive transfer of antigen-loaded DCs or tumor cells, re-

combinant viral vectors, and bacterial vectors (especially Listeria;

reviewed in Kalos and June, 2013; Palucka and Banchereau,

2013). Work must continue evaluating each of these looking for

pharmacodynamic read-outs of CD8 T cell responses. With the

clinical success of anti-PD-L1 and anti-PD-1 antibodies, it should

now be possible to evaluate different vaccines, adjuvants, and

delivery approaches in combination and therefore under condi-

tions that should enhance the ability to judge their relative

efficacies with common clinical read-outs, such as partial or

complete responses in established tumors.
4 Immunity 39, July 25, 2013 ª2013 Elsevier Inc.
Work on vaccines should continue in a systematic fashion with

human studies, because animal models are unlikely to validate

the best path forward (Davis, 2012). It is also unlikely that the

best vaccine approaches will differentiate themselves any time

soon, given the lack of direct comparisons in clinical studies.

This represents a substantial logistical challenge to incorpo-

rating vaccination as part of a drug development plan. Not only

are such trials long and expensive, but they also represent only

one of many potential combinations that are competing to be

evaluated in conjunction with other immunotherapies (Vanne-

man and Dranoff, 2012).

Therapeutic vaccination is not the only approach to acceler-

ating and expanding the production of T cell immunity. Because

anticancer T cells can be produced spontaneously, there is a

growing appreciation that the tumor itself represents a type of

endogenous vaccine. Accessing the naturally occurring source

of cancer-associated antigens avoids problems associated

with selection and delivery (Heo et al., 2013; van den Boorn

and Hartmann, 2013). This approach is also convenient, but

achieving it requires detailed knowledge around whether stan-

dard of care chemotherapy or targeted therapies are compatible

with immunotherapies. Some therapies are thought to cause

tumor cell death in a fashion that promotes immunity (reviewed

in Zitvogel et al., 2013). However, it is unclear whether this effect

can be accurately predicted and will, in any event, require empir-

ical study. Chemotherapy, radiation therapy, and targeted ther-

apies must also be evaluated for their effects on the immune

system. Although it is assumed that many might be antagonistic,

there are some reports that others might promote T cell activity



Table 2. Inhibitors of PD-L1 or PD-1 Currently Being Developed in Oncology

Therapeutic Lead Company Antibody Type Affinity/Kd

Interaction

Inhibited Development

Anti-PD-L1

MPDL3280A Herbst et al., 2013. Genentech/Roche Engineered IgG1

(no ADCC)

0.4 nM PD-L1:PD-1

PD-L1:B7.1

Broad (lung pivotal)

MEDI-4736 Stewart et al., 2011. AstraZeneca Modified IgG1

(no ADCC)

Not available PD-L1:PD-1

PD-L1:B7.1

Phase I

Anti-PD-1

Nivolumab Brahmer et al., 2010. Bristol-Myers

Squibb

IgG4 2.6 nM PD-L1:PD-1

PD-L2:PD-1

Broad (lung, melanoma,

RCC pivotal)

Lambrolizumab Patnaik et al., 2012. Merck & Co IgG4 (humanized) 29 pM PD-L1:PD-1

PD-L2:PD-1

Broad (melanoma pivotal)

Pidilizumab Rotem-Yehudar et al., 2009;

Westin et al., 2012.

CureTech IgG1 (humanized) Not available Broad

AMP-224 Smothers et al., 2013. GlaxoSmithKline PD-L2 IgG1 Fc

fusion

Not available PD-L1:PD-1

PD-L2:PD-1

Phase I
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(Demaria et al., 2005; Duraiswamy et al., 2013; Hiniker et al.,

2012; Ott et al., 2013; Postow et al., 2012; Stagg et al., 2011; Zit-

vogel et al., 2013).

Bypassing Vaccination by Adoptive T Cell Therapy

Another exciting development is that the initial demonstrations

that genetically modified autologous T cells could be reinfused

into patients to yield substantial clinical benefit, at least in certain

B cell malignancies (Grupp et al., 2013; reviewed in Kalos and

June, 2013). The most well developed of these is the use of

‘‘CARs,’’ or chimeric antigen receptors, in which a patient’s

T cells are transfected with a construct encoding an antibody

against a tumor surface antigen (typically CD19) fused to T cell

signaling domains (Kochenderfer and Rosenberg, 2013). Similar

approaches are under investigation with recombinant T cell

receptors (reviewed in Kalos and June, 2013). The procedure

avoids the need for immunization and may even overcome

mechanisms of immune suppression by overwhelming the sys-

tem through infusion of large quantities of the modified T cells.

This can force the revolution of the Cancer-Immunity Cycle,

enhancing the accumulation of stimulatory immune factors,

and potentially promotes eventual self-propagation of the cycle.

The potential limitations here, which are yet to be fully deter-

mined, include whether the approach can be extended to can-

cers beyond hematologic malignancies, whether the delivery of

large numbers of monospecific T cells will cause resistance

due to antigenic drift, and whether the toxicity issues already

identified can be safely managed.

T Cell Priming and Activation

Whether tumor antigens are delivered exogenously or are

captured and presented by DCs endogenously, another strategy

for intervening in the Cancer-Immunity Cycle involves the control

of T cell activation. This is the presumed primary mechanism of

action of anti-CTLA4 antibodies, such as ipilimumab, which

blocks the interaction of the major negative regulator of T cells

(CTLA4) with its ligands B7.1 and B7.2 (CD80 and CD86; Qureshi

et al., 2011). Thus, during antigen presentation in lymphoid

organs (or in the periphery), the expansion of T cell responses

is disinhibited, thereby promoting the production of autoreactive

T cells, including tumor-specific T cells. The lack of selectivity in
T cell expansion combined with the fundamental importance of

CTLA4 as a checkpoint may underlie the significant immune-

related toxicities seen in patients treated with ipilimumab (Hodi

et al., 2010).

Nevertheless, the ability of this ‘‘lever’’ to create durable clin-

ical responses in some patients has triggered a great deal of

effort to seek other immune modulators; modulators that can

achieve what ipilimumab can, but in a more selective and

controllable fashion that will provide the potential for greater ef-

ficacy and frequency of response, with less autoimmune-related

toxicity. In addition, the combination of ipilimumab with agents

that modulate complimentary steps on the Cancer-Immunity Cy-

cle are already underway (Karan and Van Veldhuizen, 2012; Ma-

dan et al., 2012), and preliminary results from combinations that

inhibit tumor immunosuppression appear very promising in

enhancing both antitumor immune responses and autoimmune

toxicity (see below).

Immunostat Blockade: PD-L1 and PD-1

The identification of PD-L1 as a distal immune modulator

expressed in 20%–50% of human cancer (Herbst et al., 2013)

has led to the development of a number of cancer immunother-

apies that target the interactions between PD-L1:PD-1, PD-

L1:B7.1, and PD-L2:PD-1 (Table 2; reviewed in Chen et al.,

2012; Topalian et al., 2012a). Anti-PD-L1 and anti-PD-1 mono-

therapy response rates have been presented for over 750 pa-

tients (ranging from 13% to 38%) treated across a broad range

of human cancer types. Agents tested as monotherapy include

MPDL3280A (anti-PDL1; Genentech/Roche; Cho et al., 2013;

Hamid et al., 2013b; Herbst et al., 2013; Powderly et al., 2013;

Spigel et al., 2013; Tabernero et al., 2013), nivolumab (anti-PD-

1; Bristol Myers Squibb; Brahmer et al., 2013; Drake et al.,

2013; Sznol et al., 2013; Topalian et al., 2013), and lambrolizu-

mab (anti-PD-1; Merck; Hamid et al., 2013a). Antitumor activity

of the PD-L1- and PD-1-targeted therapies that utilize an engi-

neered immunoglobulin G1 (IgG1) (MPDL3280A; modified to

eliminate ADCC by altering FcgR binding; Herbst et al., 2013)

or IgG4 antibody (nivolumab and lambrolizumab; expected to

reduce ADCC; Isaacs et al., 1996) backbone have resulted in

particularly rapid antitumor activity, with some responses
Immunity 39, July 25, 2013 ª2013 Elsevier Inc. 5
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observed within days of starting treatment. These data suggest

that, for many human cancers, the Cancer-Immunity Cycle is

intact up to the point of tumor cell killing by T cells, which can

be potently restrained by PD-L1. Once the PD-L1:PD-1 interac-

tion is blocked, preexisting anticancer T cells can have their

effector function rapidly restored. This is consistent with the pro-

posedmechanism of action of this negative regulator, where PD-

L1 (expressed either on tumor cells or on tumor-infiltrating im-

mune cells) binding to PD-1 on activated effector T cells causes

the recruitment of the phosphatase SHP-2 and subsequent inac-

tivation of the PI3 kinase-signaling cascade (Chemnitz et al.,

2004; Parry et al., 2005). These events block the secretion or pro-

duction of cytotoxic mediators required for killing. However, this

block appears to be rapidly reversible once the inhibition is lifted.

Most importantly, the PD-L1 and PD-1 antagonists have

exhibited significant response rates, and largely unprecedented

durable responses. In melanoma, the anti-PD-1 antibody nivolu-

mab has reported an overall response rate (ORR) of 31% (33/

107) and a duration of response of 18.4 to 117.0+ weeks (Sznol

et al., 2013), whereas lambrolizumab reported an ORR of 38%

and duration of response of 1.9 to 10.8 months (Hamid et al.,

2013a). Across a broad range of human cancers, which included

lung, colon, head and neck, and gastric cancers in addition to

melanoma and renal cell carcinoma, the anti-PD-L1 antibody

MPDL3280A had an ORR of 21% (29% in melanoma, 22% in

lung cancer) with 26 of 29 responses ongoing at the time of the

report (time from starting treatment ranged from 3 to 15+

months) (Herbst et al., 2013; Hamid et al., 2013b; Spigel et al.,

2013). Additionally, the safety profile of these agents suggests

that whilemany cancer types express PD-L1 to inhibit anticancer

immune responses, most patients do not have underlying auto-

immunity inhibited only by PD-L1 expression (Francisco et al.,

2010). Grade 3-4 treatment-related adverse events were noted

to occur in 13% to 21% of patients treated (Hamid et al.,

2013a; Herbst et al., 2013; Sznol et al., 2013). The majority of re-

ported cases have been readily manageable with supportive

care or by immune suppression with steroid administration.

This is in stark contrast to the safety profiles of most therapies

that target more proximal steps in the Cancer-Immunity Cycle

(e.g., anti-CTLA4; Hodi et al., 2010) andmight hint at the benefits

of specifically targeting the properties of cancer that inhibit the

immune response rather than nonspecific activation of the im-

mune system. Although it is still relatively early in the develop-

ment of these inhibitors (phase II/III trials are underway), the

fact that three different antibodies have yielded such results

greatly increases the confidence in a positive outcome.

From a drug development and clinical care perspective, the

activity observed with anti-PD-L1 or anti-PD-1 is clear. Robust

single-agent activity was observed rapidly and for extended du-

rations without identified off-target toxicity (Topalian et al., 2013).

This situation is distinct from the majority of other agents under

investigation (or approved) in oncology, except for a select group

of small-molecule inhibitors that target driver oncogenic translo-

cations or mutations (e.g., imatinib for BCR-Abl [Lin et al., 2013],

crizotinib for ALK translocations [Rothschild and Gautschi,

2013], vemurafenib [Huang et al., 2013], and dabrafenib [Huang

et al., 2013] for the V600EBRAFmutation and erlotinib formutant

EGF receptor [Bulgaru et al., 2003]). Therefore, extended trials

looking for incremental effects or complex combination ap-
6 Immunity 39, July 25, 2013 ª2013 Elsevier Inc.
proaches should not be necessary. Furthermore, the potential

for biomarker-driven patient selection to optimize treatment

benefit appears promising and might distinguish patients most

likely to have strong benefit from the inhibition of PD-L1:PD-1

as monotherapy opposed to those that may most likely require

a different or combinatorial approach (Powderly et al., 2013;

Topalian et al., 2013). These results also emphasize the likely

importance of immunosuppression in the natural history of can-

cer. Unfortunately, as the clinical trial data to date confirm, the

majority of patients will not respond or will respond only incom-

pletely to PD-L1 or PD-1 inhibitors. Because multiple other

mechanisms of immunosuppression are known that may work

together or in parallel with PD-L1:PD-1-mediated inhibition,

there is a need to pursue other potential agents that exhibit the

same profile of rapid, substantial responses. For example,

many tumors are characterized by significant infiltration by T reg-

ulatory cells, and targeting these may prove to be a fruitful

approach (Jacobs et al., 2012). It is possible that even ipilimu-

mab works, at least in part, by causing T regulatory cell (Treg)

depletion.

Combination Immune Therapies

It is reasonable to suspect that immunotherapy approaches,

from vaccines to CARs, would be more effective when given in

combination with a PD-L1 or PD-1 inhibitor (Goding et al.,

2013; West et al., 2013). By disabling the immune inhibition in

the tumor microenvironment, approaches that target earlier

steps in the Cancer-Immunity Cycle (steps 1–6) are more likely

to lead to cancer cell killing. Conversely, PD-L1 or PD-1 inhibition

may not be sufficient for optimal antitumor activity in some

patients, particularly those that do not demonstrate evidence

of tumor immune cell infiltration (Gajewski et al., 2011, 2013; Ga-

jewski, 2012). PD-L1- and PD-1-targeted therapies suggest that

in patients whose tumors express PD-L1, the proximal steps of

theCancer-Immunity Cycle are intact andmay not require further

enhancement. These patients are most commonly the patients

who exhibit rapid and durable response to PD-L1 or PD-1 inhibi-

tion. However, although some PD-L1-negative tumors still

respond to PD-L1 or PD-1 monotherapy, the majority of tumors

do not (Powderly et al., 2013; Grosso et al., 2013). This outcome

can be indicative of patients who have a defect in steps 1 to 6 of

the Cancer-Immunity Cycle and may be most commonly a

defect in cancer antigen-specific T cell activation or infiltration

of T cells into tumors (Powderly et al., 2013). However, more

data from human tumors are likely to be necessary to further

elucidate what critical breaks in the cycle are most prominent

in different human cancers.

One approach, combining a CTLA4 targeted therapy (ipilimu-

mab) with a PD-1-targeted inhibitor (nivolumab), appears to

enhance the immune activity in patients over either therapy alone

in an early phase study (Wolchok et al., 2013). Anti-CTLA4 can

lead to enhanced priming and activation of antigen-specific

T cells and potentially clearance of regulatory T cells from the

tumor microenvironment (Table 1). The blocking of PD-L1 or

PD-1 can remove the inhibition of cancer cell killing by T cells

(Figure 3). By inhibiting two targets that affect two steps in the

Cancer-Immunity Cycle, rapid and deep responses (by modified

WHO criteria) were observed in patients with melanoma (ORR:

40% [21/52]; CR: 10% [5/52]). Immune-related toxicities were

also enhanced in their magnitude, frequency, and onset (53%
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Figure 3. Therapies that Might Affect the Cancer-Immunity Cycle
The numerous factors that come into play in the Cancer-Immunity Cycle provide a wide range of potential therapeutic targets. This figure highlights examples of
some of the therapies currently under preclinical or clinical evaluation. Key highlights include that vaccines can primarily promote cycle step 2, anti-CTLA4 can
primarily promote cycle step 3, and anti-PD-L1 or anti-PD-1 antibodies can primarily promote cycle step 7. Although not developed as immunotherapies,
chemotherapy, radiation therapy, and targeted therapies can primarily promote cycle step 1, and inhibitors of VEGF can potentially promote T cell infiltration into
tumors—cycle step 5. Abbreviations are as follows: GM-CSF, granulocyte macrophage colony-stimulating factor; CARs, chimeric antigen receptors.

Immunity

Review
Grade 3-4 treatment-related toxicities). Although many of these

were serious and required treatment, therapy discontinuation,

or hospitalization, the durable partial and complete responses

in melanoma may warrant this approach in some patients. In

particular, combination therapy appeared to most dramatically

benefit patients who were less likely to benefit from PD-L1 or

PD-1 inhibition alone, because their tumors were PD-L1-nega-

tive (6/13 PD-L1-positive and 9/22 PD-L1-negative patients re-

sponded to combination therapy; Wolchok et al., 2013). The

addition of a CTLA4-targeted therapy may be completing the

defect in the Cancer-Immunity Cycle for patients who are PD-

L1-negative. Further studies of preipilimumab and on ipilimumab

treatment tumor samples arewarranted to better understand this

effect.

Other combinations that merit serious consideration include

anti-PD-L1 or anti-PD-1 with vaccination, especially if it be-

comes possible to monitor a patient’s T cell profile to distinguish

individuals who have generated suboptimal T cell responses to

their cancers (Duraiswamy et al., 2013; Ge et al., 2013). In addi-

tion, combinations with agents that will enhance T cell trafficking

and infiltration into the tumor bed should be explored vigorously,

because the entry stepmay be important in some patients. In this
class, inhibition of VEGF by the anti-VEGF antibody bevacizu-

mab appears to be a promising candidate based on hints from

the preclinical and clinical literature (Motz and Coukos, 2013;

Hodi et al., 2010). Similarly, B-Raf inhibitors (vemurafenib) may

also enhance T cell infiltration into tumors (Liu et al., 2013). Of

course, with increased activity due to combinations comes the

increased chance for additive or synergistic toxicity. This further

highlights the importance of selecting therapeutic targets that

are specific to the ability of a tumor to escape immune eradica-

tion over targets thatmay also play an important role inmediating

immune homeostasis and preventing autoimmunity.

Concluding Remarks
The objective of understanding the inherent immune biology

related to cancer is to better define strategies to harness the

human immune response against cancer to achieve durable re-

sponses and/or complete eradication of cancer in patients

safely. Multiple approaches to cancer therapy exist, and few

are as complicated as immune-based therapy. Multiple numbers

of systemic factors can effect or contribute to the success or fail-

ure of immune therapy and lends to this complexity. Results may

be confounded by many currently unmeasured variables,
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including any given patient’s gut microbiome, their diet, and

whether they contract an underlying infection (Brestoff and Artis,

2013; James et al., 2012, Rothman and Paterson, 2013; Xu et al.,

2012). Yet, as complicated and incompletely understood human

immunology may be, the immune response to cancer may be

less complicated and less protean than the biology of cancer

cells themselves.

The early data from clinical studies of immune-based thera-

pies suggest durable activity that few cancer therapies can

approximate. The immune response can be rapid, durable, and

adaptable. Once activated, it has the potential to be self-propa-

gating (for example, see Hamid et al., 2013a). These characteris-

ticsmay preempt the development of secondary resistance seen

with most cancer therapies. In fact, with each revolution of the

cycle, not only can an accumulation of immune stimulatory fac-

tors occur (Powderly et al., 2013), reinforcing the ongoing anti-

tumor immune response, but it can also stimulate the generation

of new antitumor immune responses by promoting antigen

spreading (for example, see Corbière et al., 2011). As much as

immune responses can completely and safely eradicate viral

infections, the goal of cancer immunotherapy should remain

the complete and safe eradication of cancer from individual

patients. Meeting this objective may require only monotherapy

approaches in some patients, whereas others may require com-

bined therapies. By understanding the biology present in specific

patients, immune-related biomarkers may allow us to map out

the Cancer-Immunity Cycle for individual patients and enable

tailoring of specific immune therapies or combinations of im-

mune therapies.

REFERENCES

Boon, T., Cerottini, J.C., Van den Eynde, B., van der Bruggen, P., and Van Pel,
A. (1994). Tumor antigens recognized by T lymphocytes. Annu. Rev. Immunol.
12, 337–365.

Brahmer, J.R., Drake, C.G., Wollner, I., Powderly, J.D., Picus, J., Sharfman,
W.H., Stankevich, E., Pons, A., Salay, T.M., McMiller, T.L., et al. (2010). Phase
I study of single-agent anti-programmed death-1 (MDX-1106) in refractory
solid tumors: safety, clinical activity, pharmacodynamics, and immunologic
correlates. J. Clin. Oncol. 28, 3167–3175.

Brahmer, J.R., Horn, L., Antonia, S.J., Spigel, D.R., Gandhi, L., Sequist, L.V.,
Sankar, V., Ahlers, C.M., Wigginton, J.M., Kollia, G., et al. (2013). Survival
and long-term follow-up of the phase I trial of nivolumab (Anti-PD-1; BMS-
936558; ONO-4538) in patients (pts) with previously treated advanced non-
small cell lung cancer (NSCLC). J. Clin. Oncol. 31(suppl), 8030.

Brestoff, J.R., and Artis, D. (2013). Commensal bacteria at the interface of host
metabolism and the immune system. Nat. Immunol. 14, 676–684.

Bulgaru, A.M., Mani, S., Goel, S., and Perez-Soler, R. (2003). Erlotinib (Tar-
ceva): a promising drug targeting epidermal growth factor receptor tyrosine
kinase. Expert Rev. Anticancer Ther. 3, 269–279.

Chemnitz, J.M., Parry, R.V., Nichols, K.E., June, C.H., and Riley, J.L. (2004).
SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch
motif of programmed death 1 upon primary human T cell stimulation, but
only receptor ligation prevents T cell activation. J. Immunol. 173, 945–954.

Chen, D.S., Irving, B.A., and Hodi, F.S. (2012). Molecular pathways: next-gen-
eration immunotherapy—inhibiting programmed death-ligand 1 and pro-
grammed death-1. Clin. Cancer Res. 18, 6580–6587.

Cho, D.C., Sosman, J.A., Sznol, M., Gordon,M.S., Hollebecque, A., Hamid, O.,
McDermott, D.F., Delord, J.-P., Rhee, I.P., Mokatrin, A., et al. (2013). Clinical
activity, safety, and biomarkers of MPDL3280A, an engineered PD-L1 anti-
body in patients with metastatic renal cell carcinoma (mRCC). J. Clin. Oncol.
31(suppl), 4505.
8 Immunity 39, July 25, 2013 ª2013 Elsevier Inc.
Corbière, V., Chapiro, J., Stroobant, V., Ma, W., Lurquin, C., Lethé, B., van
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